N-acyldopamines control striatal input terminals via novel ligand-gated cation channels.

نویسندگان

  • Samira G Ferreira
  • Tonia Lomaglio
  • Antonio Avelino
  • Francisco Cruz
  • Catarina R Oliveira
  • Rodrigo A Cunha
  • Attila Köfalvi
چکیده

Endogenous analogues of capsaicin, N-acyldopamines, were previously identified from striatal extracts, but the putative presynaptic role of their receptor, the TRPV(1)R (formerly: vanilloid or capsaicin receptor) in the caudate-putamen is unclear. We found that the endogenous TRPV(1)R agonists, N-arachidonoyldopamine (NADA) and oleoyldopamine (OLDA) with EC(50) values in the nanomolar range, as well as the synthetic TRPV(1)R activator 2-aminoethoxydiphenylborane (2APB), and palmytoyldopamine (PALDA, another endogenous N-acyldopamine inactive at the TRPV(1)R), but not capsaicin or other endogenous and synthetic cannabinoids, triggered a rapid Ca(2+) entry with the concomitant stimulation of glutamate and dopamine release. These effects persisted in the TRPV(1)R null-mutant mice, and were insensitive to antagonists of common ionotropic receptors, to several TRPV(1)R antagonists and to the absence of K(+). Furthermore, these N-acyldopamine receptors in glutamatergic and dopaminergic terminals are different based on their different sensitivity to anandamide, capsazepine and Gd(3+) at nanomolar concentrations. Altogether, novel ion channels instead of the TRPV(1)R mediate the presynaptic action of N-acyldopamines in the striatum of adult rodents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of transmitter release via presynaptic ligand-gated ion channels.

Neurons communicate through the exocytotic release of transmitters from presynaptic axon terminals and the ensuing activation of postsynaptic receptors. Instantaneous responses of postsynaptic cells to released neurotransmitters are mediated by ligand-gated ion channels, whereas G protein-coupled receptors mediate rather delayed effects. Moreover, the actions of ionotropic receptors are transie...

متن کامل

Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels.

Hippocampal mossy fiber long-term potentiation (LTP) is expressed presynaptically, but the exact mechanisms remain unknown. Here, we demonstrate the involvement of the hyperpolarization-activated cation channel (Ih) in the expression of mossy fiber LTP. Established LTP was blocked and reversed by Ih channel antagonists. Whole-cell recording from granule cells revealed that repetitive stimulatio...

متن کامل

Release-dependent feedback inhibition by a presynaptically localized ligand-gated anion channel

Presynaptic ligand-gated ion channels (LGICs) have long been proposed to affect neurotransmitter release and to tune the neural circuit activity. However, the understanding of their in vivo physiological action remains limited, partly due to the complexity in channel types and scarcity of genetic models. Here we report that C. elegans LGC-46, a member of the Cys-loop acetylcholine (ACh)-gated c...

متن کامل

HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons.

The globus pallidus (GP) is a critical component of the basal ganglia circuitry controlling motor behavior. Dysregulation of GP activity has been implicated in a number of psychomotor disorders, including Parkinson's disease (PD), in which a cardinal feature of the pathophysiology is an alteration in the pattern and synchrony of discharge in GP neurons. Yet the determinants of this activity in ...

متن کامل

Role of Kv1 Potassium Channels in Regulating Dopamine Release and Presynaptic D2 Receptor Function

Dopamine (DA) release in the CNS is critical for motor control and motivated behaviors. Dysfunction of its regulation is thought to be implicated in drug abuse and in diseases such as schizophrenia and Parkinson's. Although various potassium channels located in the somatodendritic compartment of DA neurons such as G-protein-gated inward rectifying potassium channels (GIRK) have been shown to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2009